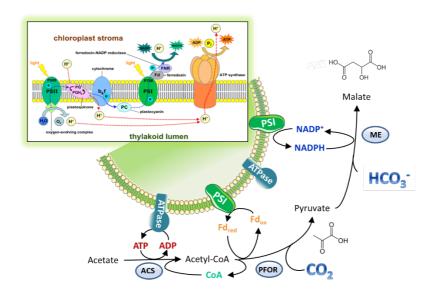
CORENZ

Cofactor Regeneration in Enzymatic Systems


Institute for Applied Biotechnology (IAB)

Project leader	Prof. Dr. Hartmut Grammel
Researcher	Andreas Witt, Beryl Cancro
Financing Program	Bundesministerium für Bildung und Forschung Biotechnologie 2020plus - Basistechnologien für eine nächste Generation biotechnologischer Verfahren
Partners	Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg
Duration	2018-2022
Project description	The problem of rising CO ₂ levels in the atmosphere as a major cause of global warming, makes it highly attractive to utilize CO ₂ as raw material for producing chemicals. Biocatalytic conversion using CO ₂ -fixing enzymes is particularly interesting since enzymes generally operate with high specificity and selectivity at moderate environmental conditions. We recently demonstrated that natural decarboxylases can be operated in the reverse CO ₂ - fixing direction in synthetic combinations with low potential redox cofactors <i>in vitro</i> (1). We now incorporated further enzymes to establish a synthetic linear pathway for conversion of acetate and 2CO ₂ to the C4-dicarboxylic acid malate. However, enzymatic reactions often depend on cofactors which have to be continuously replenished and lead to high costs in running biocatalytic systems. Furthermore, the accumulation of the used cofactors may cause inhibitory effects and reduce overall efficacy. This project addresses the issue of enzymatic conversion of CO ₂ including cofactor recycling within a sustainable closed circular process. As cofactor
INSTITUT	IAB
PROJEKT	CORENZ
ANSPRECHPARTNER/IN	Prof. Dr. Hartmut Grammel

recycling module illuminated chloroplast are incorporated to regenerate the cofactors ATP, NADPH, ferredoxin, and coenzyme A. The pathway potentially provides a biocatalytic route to C4 dicarboxylic acid platform chemicals with CO₂ as a substrate.

(1) Witt A, Pozzi R, Diesch S, Hädicke O, Grammel H.
2019. New light on ancient enzymes – in vitro CO₂
fixation by pyruvate synthase of *Desulfovibrio africanus*and *Sulfolobus acidocaldarius*. FEBS J. 286(22):4494-4508.
doi: 10.1111/febs.14981.

Insert by Somepics - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=38088695

INSTITUT PROJEKT ANSPRECHPARTNER/IN IAB CORENZ

Prof. Dr. Hartmut Grammel

